Preserving Poisson Structure and Orthogonality in Numerical Integration of Differential Equations
نویسنده
چکیده
We consider the numerical integration of two types of systems of differential equations. We first consider Hamiltonian systems of differential equations with a Poisson structure. We show that symplectic Runge-Kutta methods preserve this structure when the Poisson tensor is constant. Using nonlinear changes of coordinates this structure can also be preserved for non-constant Poisson tensors, as exemplified on the Euler equations for the free rigid body. We also consider orthogonal flows and the closely related class of isospectral flows. To numerically preserve the orthogonality property we take the approach of formulating an equivalent system of differential-algebraic equations (DAEs) and of integrating the system with a special combination of a particular class of Runge-Kutta methods. This approach requires only matrix-matrix products and can preserve geometric properties of the flow such as reversibility.
منابع مشابه
Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملDiscontinuous Hamiltonian Finite Element Method for Bilinear Poisson Brackets
We develop a Hamiltonian discontinuous finite element discretization of a generalized Hamiltonian system for linear hyperbolic systems, which includes the rotating shallow water equations, the acoustic and Maxwell equations. These equations have a Hamiltonian structure with a bilinear Poisson bracket, and as a consequence the phase-space structure, mass and energy are preserved. We discretize t...
متن کاملDiscontinuous Hamiltonian Finite Element Method for Linear Hyperbolic Systems
We develop a Hamiltonian discontinuous finite element discretization of a generalized Hamiltonian system for linear hyperbolic systems, which include the rotating shallow water equations, the acoustic and Maxwell equations. These equations have a Hamiltonian structure with a bilinear Poisson bracket, and as a consequence the phase-space structure, “mass” and energy are preserved. We discretize ...
متن کامل